In recent years, chronic obstructive pulmonary disease (COPD) has become a serious problem globally.\(^1\) Epidemiologic studies indicate that COPD, which was ranked as the sixth leading cause of death in 1990, will become the third leading cause of death by 2020 and the fourth leading cause of death by 2030.\(^2\) The prevalence of COPD increases with age,\(^3,5\) but the rate of recognition and diagnosis of COPD in affected individuals remains low. Therefore, many people in the community who are living with COPD have not been diagnosed and are not undergoing treatment.\(^6\) Consequently, a simple and convenient method is required for assessing respiratory function in the community. The prevalence of COPD increases with age,\(^3,5\) but the rate of recognition and diagnosis of COPD in affected individuals remains low.
Chest wall mobility is closely related to respiratory function. Similar to the lungs, the chest wall is an elastic structure that follows the displacement of the lungs. Measurement of chest wall mobility at different levels using measuring tape has been applied in clinical practice to evaluate the effects of rehabilitation. This measurement technique exhibits a high inter- and intraobserver reliability and is a simple and economical method for assessing respiratory function.

Previous studies have found a statistically significant relationship between chest wall mobility and forced vital capacity (FVC), forced expiratory volume in 1 second (FEV₁), and respiratory muscle strength. Although spirometry requires specialized equipment and techniques, measurement of chest wall mobility can be performed with relative ease in a variety of settings, allowing for screening of respiratory health within the community.

In the current study, we sought to evaluate the difference in chest wall mobility and respiratory function in elderly community-dwelling volunteers of different age groups. We hypothesized that if chest wall mobility could be associated with the age-related decrease in respiratory function, then measurement of chest wall mobility could be used for respiratory function screening among elderly persons within a community.

Methods

This cross-sectional observational study was carried out by Kyoto University in Himeji city in the Hyogo prefecture and Ayabe city in the Kyoto prefecture in Japan in November 2013. Participants were recruited by advertisements in the local community paper, and eligibility was determined by interview. Because about half as many men as women were eligible for the study, and because only 5 of the men were older than 80 years, we would have been unable to establish differences between the variables among groups. Therefore, the analysis included women only. Furthermore, because the purpose of the study was to address age-dependent changes in chest wall mobility, we excluded individuals with COPD, as well as those with severe cognitive impairment; severe cardiac, pulmonary, or musculoskeletal disorders; and comorbidities associated with greater risk of falls, such as Parkinson disease or stroke. The inclusion criteria were female sex, age 65 years or older, community-dwelling resident, and ability to ambulate independently, with or without an assistive device.

The study was conducted in accordance with the guidelines of the Declaration of Helsinki, and the study protocol was reviewed and approved by the Ethics Committee of the Kyoto University Graduate School of Medicine (E-1850). Informed consent was obtained from each participant.

Pulmonary Function Tests

Spirometry was used to measure FVC and FEV₁ in all participants. The FVC percent predicted (%FVC) and FEV₁ percent predicted (%FEV₁) were calculated and corrected for height and age. Spirometry was carried out according to the guidelines of the Japanese Respiratory Society, and the formulas for calculating %FVC and %FEV₁ were derived from Japanese criteria. The FEV₁/FVC ratio was also calculated. All pulmonary function tests and measurements were conducted by the same trained physical therapist (D.A.).

Chest Wall Mobility

To ensure a high level of reproducibility, chest wall mobility was measured according to methods described previously. During the measurements, the participants stood with their hands at their sides, and their chest circumference was measured with a measuring tape at maximal inhalation and maximal exhalation at 3 levels: the axillary line (axillary excursion), tip of the xiphoid process (xiphoid excursion), and the lateral lower edge of the tenth rib (tenth rib excursion). These levels were chosen because they are measured frequently in clinical practice. The standardized measurement procedure included keeping the tape aligned horizontally with the...
Measurements of FVC and FEV₁ indicated statistically significant differences in respiratory function between groups 1 and 3 and groups 2 and 3 (FVC: \(F_{4,977} = 4.97, P = .01 \); \(\text{FEV}_1 \): \(F_{4,11r} = 6.17, P = .01 \)). The differences across age groups in axillary excursion and FVC, using group 1 as a reference, are shown in the Figure. The gradual rate of decrease in thoracic excursion at the axillary level with increased age was accompanied by a marked rate of decrease in FVC.

Discussion

In the current study, the relationship among chest wall mobility, respiratory function, and age was evaluated by comparing the differences in chest wall mobility and spirometric parameters among women in 4 age groups. Statistically significant differences between groups were detected during the thoracic excursion at the axillary level and in respiratory function.

Although a sharp decline in FVC was seen with age, as indicated by the statistically significant difference between groups 2 and 3, the decline in thoracic excursion at the axillary level with age was more gradual (Figure). These results suggest that the decrease in chest wall mobility preceded the decrease in FVC. Previous studies have shown that the age-related decrease in FVC is associated with many factors, including anatomic and physiologic changes in the lungs and upper airways, decreased functioning of the respiratory muscles, and changes in chest wall compliance.⁵,¹⁶ Accordingly, measurement of chest wall mobility should provide a straightforward assessment of chest wall compliance. We believe that the primary cause of the differences seen in axillary excursion among the age groups was the related decrease in chest wall compliance.

Several studies have demonstrated that a decrease in chest wall compliance is a structural cause of an age-related decrease in respiratory function.⁵,¹⁶-¹⁸ In particular, calcification of costal cartilage and costovertebral articulations has been associated with decreased chest
Therefore, thoracic excursion at the level of the tenth rib would not be as markedly affected by age-related changes in chest wall compliance as it would be by disease-related changes. Malaguti et al reported chest wall mobility at the abdominal level in patients with COPD. The shape of the thorax also affects chest wall compliance. Janssens et al reported that age-related osteoporosis resulted in changes in the shape of the thorax in elderly persons. In patients with osteoporosis, intervertebral disk spaces are narrowed, and vertebral fractures occur more frequently. Although the decrease in thoracic excursion at the axillary level with age was statistically significant in the current study, no statistically significant differences in tenth rib excursion were seen. It was thought that axillary excursion was more profoundly affected by changes in chest wall compliance than tenth rib excursion because the tenth rib does not have a sternal articulation and the anterior portion of the tenth rib is covered by abdominal muscles.

Table. Participant Characteristics by Age Group in a Study of Age-Related Decline in Chest Wall Mobility Among Community-Dwelling Elderly Women (N=132)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Group 1 (n=38)</th>
<th>Group 2 (n=45)</th>
<th>Group 3 (n=38)</th>
<th>Group 4 (n=11)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height, cm</td>
<td>153.0 (4.9)</td>
<td>152.0 (5.2)</td>
<td>148.8 (5)</td>
<td>150.5 (6.1)</td>
<td><.01*</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>55.4 (7.7)</td>
<td>53.3 (8.6)</td>
<td>51.2 (8.2)</td>
<td>48.3 (4.7)</td>
<td>.03**</td>
</tr>
<tr>
<td>Axillary excursion, cm</td>
<td>3.4 (1.3)</td>
<td>3.2 (1.1)</td>
<td>2.8 (1.1)</td>
<td>2.3 (0.5)</td>
<td>.01**</td>
</tr>
<tr>
<td>Xiphoid excursion, cm</td>
<td>5.1 (1.5)</td>
<td>4.9 (1.7)</td>
<td>4.3 (2.3)</td>
<td>4.1 (1.3)</td>
<td>.12</td>
</tr>
<tr>
<td>10th rib excursion, cm</td>
<td>3.2 (1.4)</td>
<td>3.0 (1.7)</td>
<td>3.3 (2.8)</td>
<td>2.6 (1.4)</td>
<td>.59</td>
</tr>
<tr>
<td>FVC, L</td>
<td>2.23 (0.67)</td>
<td>2.23 (0.62)</td>
<td>1.81 (0.57)</td>
<td>1.73 (0.74)</td>
<td><.01*</td>
</tr>
<tr>
<td>FEV₁, L</td>
<td>1.78 (0.52)</td>
<td>1.79 (0.48)</td>
<td>1.40 (0.48)</td>
<td>1.42 (0.57)</td>
<td><.01*</td>
</tr>
<tr>
<td>%FVC</td>
<td>94.04 (26.97)</td>
<td>99.25 (27.54)</td>
<td>88.02 (26.36)</td>
<td>82.84 (32.61)</td>
<td>.17</td>
</tr>
<tr>
<td>%FEV₁</td>
<td>93.84 (26.54)</td>
<td>101.67 (27.2)</td>
<td>87.82 (29.4)</td>
<td>90.38 (34.23)</td>
<td>.16</td>
</tr>
<tr>
<td>FEV₁/FVC, %</td>
<td>80.00 (9.07)</td>
<td>81.53 (9.33)</td>
<td>77.35 (13.21)</td>
<td>84.64 (10.13)</td>
<td>.15</td>
</tr>
</tbody>
</table>

* Data are given as mean (SD).
** Significant differences between groups 1 and 3 and between groups 2 and 3.
*** Significant difference between groups 1 and 4.
**** Significant difference between groups 1 and 4 and groups 2 and 4.

Adapted for participant height and weight using analysis of covariance; other parameters were analyzed for analysis of variance.

Abbreviations: FEV₁, forced expiratory volume in 1 second; %FEV₁, FEV₁ percent predicted; FVC, forced vital capacity; %FVC, FVC percent predicted.
measure chest wall mobility in persons in the same population in the short and long term, such as at 1 year and at 5 years. Furthermore, we did not account for other factors that affect chest wall mobility, such as the prevalence of osteoporosis, vertebral alignment, and posture.

Despite these limitations, the findings of the present study provide valuable information and may encourage the measurement of thoracic excursion as a means of determining standard values for chest wall mobility in different age groups. Moreover, the efficacy of pulmonary rehabilitation programs should be more firmly established by incorporating measurements of chest wall mobility.

Conclusion

We investigated differences in chest wall mobility and respiratory function among 4 different age groups in a population of community-dwelling elderly women and detected statistically significant age-related changes in thoracic excursion at the axillary level. Moreover, we found statistically significant age-related differences in FVC and FEV₁. These findings suggest that assessment of chest wall mobility may be a useful method for detecting age-related decreases in respiratory function among elderly patients. Further longitudinal studies are needed to clarify the effects of aging on chest wall mobility.

Acknowledgments

We thank the students of Human Health Sciences at Kyoto University for their help with data collection.

Author Contributions

Mr Adachi, Mr Shirooka, Ms Morino, Mr Nozaki, Ms Hirata, and Ms Yamaguchi provided substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; Mr Nishiguchi, Mr Fukutani, Mr Tashiro, and Mr Hotta drafted the article or revised it critically for important intellectual content; Ms Yamaguchi gave final approval of the version of the article to be published; and Mr Adachi agrees to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
References

diagnosis, management, and prevention of chronic
obstructive pulmonary disease: GOLD executive summary.
doi:10.1164/rccm.201204-0596PP.

pulmonary disease: current burden and future projections.
Eur Respir J. 2006;27(2):397-412.

3. Lally PM. The aging respiratory system—pulmonary
structure, function and neural control. Respir Physiol

4. Britto RR, Zampa CC, de Oliveira TA, Prado LF, Parreira VF.
Effects of the aging process on respiratory function.

Active detection of chronic obstructive pulmonary disease
and asthma in the general population: results and economic
consequences of the DIMCA program. Am J Respir Crit

7. Kakizaki F, Shibuya M, Yamazaki T, Yamada M, Suzuki H,
Homma I. Preliminary report on the effects of respiratory
muscle stretch gymnastics on chest wall mobility in patients
with chronic obstructive pulmonary disease. Respir Care.

8. Malaguti C, Rondelli RR, de Souza LM, Domingues M,
Dal Corso S. Reliability of chest wall mobility and its correlation
with pulmonary function in patients with chronic obstructive

thoracic excursion: reliability of the cloth tape measure technique.

10. Lanza Fde C, de Camargo AA, Archija LR, Selman JP, Malaguti C,
Dal Corso S. Chest wall mobility is related to respiratory muscle
strength and lung volumes in healthy subjects. Respir Care.

11. Kaneko H, Horia J. Breathing movements of the chest
and abdominal wall in healthy subjects. Respir Care.

12. Oztalaycan S, Cimen OB, Ardicoglu O. Relationship between
chest expansion and respiratory muscle strength in patients

13. Cimen OB, Ulubas B, Sahin G, Calikoglu M, Bagis S,
Erdogan C. Pulmonary function tests, respiratory muscle
strength, and endurance of patients with osteoporosis.

14. Tojo N, Suga H, Kambe M. Lung function testing—
the Official Guideline of the Japanese Respiratory Society

15. Guideline of respiratory function tests—spirometry, flow-volume
curve, diffusion capacity of the lung [article in Japanese].

physiologic changes and perioperative management

17. Janssens JP, Pache JC, Nicod LP. Physiological changes
in respiratory function associated with ageing [review].

18. Krump PE, Knudson RJ, Parsons G, Reiser K.
1985;1(1):143-175.

Costal cartilages—a clue for determination of sex.
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub.

TeKoppele JM. Age-related decrease in proteoglycan
synthesis of human articular chondrocytes: the role
1998;42(5):1003-1009.

21. Iqbal J, Dudhia J, Bird JL, Bayliss MT. Age-related effects
of TGF-β1 on proteoglycan synthesis in equine articular cartilage.

guidelines for prevention and treatment of osteoporosis—

osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese
men and women: the research on osteoarthritis/osteoarthritis

24. Leelarungrayub D, Pothongsunun P, Yankai A, Pratanaphon S.
Acute clinical benefits of chest wall-stretching exercise
on expired tidal volume, dyspnea and chest expansion
in a patient with chronic obstructive pulmonary disease:

improves spine mobility in men with ankylosing spondylitis—

of TGF-β1 on proteoglycan synthesis in equine articular cartilage.

© 2015 American Osteopathic Association